library(bsvars)endog <-as.matrix(endog)exog <-as.matrix(exog)specification <- specify_bsvar$new(data = endog,exogenous = exog,p =4)set.seed(123)# run the burn-inburn_in =estimate(specification, 10000)
**************************************************|
bsvars: Bayesian Structural Vector Autoregressions|
**************************************************|
Gibbs sampler for the SVAR model |
**************************************************|
Progress of the MCMC simulation for 10000 draws
Every draw is saved via MCMC thinning
Press Esc to interrupt the computations
**************************************************|
# estimate the modelposterior =estimate(burn_in, 50000)
**************************************************|
bsvars: Bayesian Structural Vector Autoregressions|
**************************************************|
Gibbs sampler for the SVAR model |
**************************************************|
Progress of the MCMC simulation for 50000 draws
Every draw is saved via MCMC thinning
Press Esc to interrupt the computations
**************************************************|
p <-compute_impulse_responses(posterior, horizon =24) plot(p)